Mark scheme – Compounds, Formulae and Equations

Qı	Question		Answer/Indicative content	Marks	Guidance
1	а	i	Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR zinc carbonate would dissolve OR disappear √	1	ALLOW 'carbon dioxide produced' DO NOT ALLOW incorrectly named gas eg H ₂ Examiner's Comments Most candidates realised that effervescence and dissolving would be seen.
		ii	ZnCO3 + 2HCI ◊ZnCl2 + CO2 + H2O √	1	ALLOW multiples IGNORE state symbols Examiner's Comments Nearly all candidates were able to write the equation successfully – including those who had omitted effervescence in (i).
	b	i	Ca(OH)₂ OR Calcium hydroxide OR CaO OR Calcium oxide √ 1	1	ALLOW Calcium carbonate OR CaCO ₃ Examiner's Comments The unusual equation involving P4 molecules was answered well. Weaker candidates assumed that phosphorus was monatomic and consequentially lost credit.
		ii	6Ca + P₄ ◊ 2Ca₃P₂ √	1	ALLOW multiples IGNORE state symbols Examiner's Comments This potentially difficult dot-and-cross diagram of the ions present was done well by candidates.
		iii	$3x \begin{bmatrix} xx \\ x \\ x \\ x \\ x \\ x \end{bmatrix}^{2^{4}} 2x \begin{bmatrix} \bullet \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ x \end{bmatrix}^{3^{2^{4}}}$ Ca with 8 (or no) electrons AND phosphide ion with dot-and-cross outermost octet \checkmark Three Ca ions AND two phosphide ions with correct charges \checkmark	2	For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one of each ion is drawn.

				ALLOW (brackets not required) 3[Ca ²⁺] 3[Ca] ²⁺ [Ca ²⁺] ₃ 2[P ³⁻] 2[P] ³⁻ [P ³⁻] ₂ DO NOT ALLOW [Ca ₃] ²⁺ [3Ca] ²⁺ [Ca] ³²⁺ [P ₂] ³⁻ [2P] ³⁻ [P] ₂
		Total	6	
2		Ga³+ √	1	Examiner's Comments The formula, Ga ³⁺ , was almost universally known.
		Total	1	
3		2AI + $3F_2 \rightarrow 2AIF_3 \checkmark$	1	ALLOW multiples IGNORE state symbols Examiner's Comments Although the formula of AIF ₃ was not given, this question was well answered. When the mark was not awarded it was rarely because of errors in the formula for AIF ₃ , but more in the ratio of the reactants or in fluorine not being given as diatomic. Occasionally, the symbol for fluorine was given as FI.
		Total	1	
4		C ₁₂ H ₂₅ ✓	1	IGNORE C ₂₄ H ₅₀ Examiner's Comments The majority of candidates were able to deduce the correct empirical formula of the alkane.
		Total	1	
5		NH4+ ✔ NO3 ⁻ ✔	2	Mark incorrect ions first Examiner's Comments This question proved more difficult than intended. The specification indicates the polyatomic ions which the candidates are expected to know the formulae of and it was little surprising that many candidates could not make the leap from the empirical formula given to the possible ions present. Weak answers came from candidates who took their lead from the

				empirical formula $H_4N_2O_3$ to suggest that the ions were H^+ and N_2O^- . Among stronger candidates it was more common to identify NO_3^- than NH_4^+ , although it remained rare to see both correct ions given.
		Total	2	
				Ignore state symbols
6	i	Reaction 1: Ba + $2H_2O \rightarrow Ba(OH)_2 + H_2 \checkmark$ Reaction 2: Ba ₃ N ₂ + $6H_2O \rightarrow 3Ba(OH)_2 + 2NH_3$ Correct products \checkmark Balancing \checkmark	3	Examiner's Comments Both equations were relatively challenging. Reaction 1 was a direct question about reactions of Group 2 elements. Reaction 2 demanded a higher level of application based upon information given. Many identified the alkaline gas as NH3, but then incorrectly assumed that the alkaline solution was BaO instead of Ba(OH) ₂ . Weaker candidates suggested equations with hypothetical species that could not have born any relation to formulae that they might have encountered before.
	ii	Giant ionic (lattice) ✔	1	 ALLOW 'Giant lattice with ionic bonds' ALLOW 'Giant ionic bonds' DO NOT ALLOW 'atoms or molecules or dipoles' Examiner's Comments This question was relatively well answered, although some candidates did negate the mark by referring to molecules of Ba₃N₂ either directly or by indirect reference to intermolecular forces.
	iii		1	Ba must have a 2+ charge Ba can be with or without octet. IGNORE lack of charge on O ₂ ²⁻ ion

